Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
M
migration_scripts
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
serpucga
migration_scripts
Commits
16f47745
Commit
16f47745
authored
Jul 12, 2019
by
serpucga
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Moved auxiliar functions out of the main script
parent
95eb843f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
179 additions
and
185 deletions
+179
-185
utils.py
lib/utils.py
+133
-0
pymongoexport_csv.py
pymongoexport_csv.py
+46
-185
No files found.
lib/utils.py
0 → 100644
View file @
16f47745
import
os
import
json
import
re
from
tweet_manager.lib
import
json2csv
,
format_csv
def
create_task_database_structure
(
output_dir
:
str
)
\
->
str
:
"""
Generate the following directory tree: a top dir that will contain
all the tweet collections if it didn't exist yet and within it the top
directory for this task with a new and empty metadata file
"""
# Create the root directory for the tweet collection
(
output_dir
,
db_name
)
=
os
.
path
.
split
(
output_dir
)
if
not
os
.
path
.
isdir
(
output_dir
):
print
(
"Building directory to contain the collected tweets at: "
+
os
.
path
.
abspath
(
output_dir
)
)
os
.
mkdir
(
output_dir
)
collection_path
=
os
.
path
.
join
(
output_dir
,
db_name
)
if
not
os
.
path
.
isdir
(
collection_path
):
print
(
"Initializing collection "
+
db_name
+
"..."
)
os
.
mkdir
(
collection_path
)
metadata_path
=
os
.
path
.
join
(
collection_path
,
".metadata.json"
)
generate_metadata_file
(
metadata_path
)
return
collection_path
def
generate_metadata_file
(
metadata_path
)
->
None
:
print
(
"Executing generate_metadata_file"
)
file_metadata
=
{}
# type: Dict
metadata
=
{}
metadata
[
"files"
]
=
file_metadata
with
open
(
metadata_path
,
"w"
)
as
f
:
json
.
dump
(
metadata
,
f
)
def
add_newfile_to_metadata
(
file_path
:
str
,
metadata_path
:
str
)
->
None
:
"""
Add a new dictionary structure to the metadata file that contains
information about a newly added CSV. This should just be user for files
that have just been added to the collection, because it initializes the
count to 0
"""
print
(
"Executing add_newfile_to_metadata"
)
try
:
with
open
(
metadata_path
,
"r+"
)
as
f
:
metadata_file
=
json
.
load
(
f
)
metadata_file
[
"files"
][
file_path
]
=
{}
metadata_file
[
"files"
][
file_path
][
"count"
]
=
0
f
.
seek
(
0
)
f
.
truncate
()
json
.
dump
(
metadata_file
,
f
)
except
IOError
:
generate_metadata_file
(
metadata_path
)
add_newfile_to_metadata
(
file_path
,
metadata_path
)
def
increase_metadata_count
(
metadata_path
:
str
,
file_path
:
str
,
increase
:
int
=
1
)
\
->
None
:
"""
Use this when one tweet is appended to one of the CSVs in the
collection. This function will update the metadata file by increasing
by x the corresponding dictionary structure
"""
print
(
"Executing increase_metadata_count"
)
try
:
with
open
(
metadata_path
,
"r+"
)
as
f
:
metadata_file
=
json
.
load
(
f
)
metadata_file
[
"files"
][
file_path
][
"count"
]
+=
increase
f
.
seek
(
0
)
f
.
truncate
()
json
.
dump
(
metadata_file
,
f
)
except
IOError
:
generate_metadata_file
(
metadata_path
)
increase_metadata_count
(
metadata_path
,
file_path
,
increase
)
def
create_tweet_output_path
(
tweet
:
dict
,
output_dir
:
str
)
\
->
str
:
collection_path
=
create_task_database_structure
(
output_dir
)
# Extract year, month and date from the tweet using a regex
matchObj
=
re
.
search
(
r"^(\d{4})-(\d{2})-(\d{2}) \d{2}:\d{2}:\d{2}$"
,
str
(
tweet
[
"created_at"
]))
year
=
matchObj
.
group
(
1
)
month
=
matchObj
.
group
(
2
)
day
=
matchObj
.
group
(
3
)
date
=
(
year
,
month
,
""
)
# Classify the tweet chronologically
tweet_output_path
=
json2csv
.
mkdir_tweet_date
(
date
,
collection_path
)
tweet_output_file
=
os
.
path
.
join
(
tweet_output_path
,
day
+
".csv"
)
# If the CSV file didn't already exist, initialize it with a header
if
os
.
path
.
isfile
(
tweet_output_file
)
is
False
:
with
open
(
os
.
path
.
join
(
output_dir
,
".metadata.json"
))
as
f
:
header
=
f
.
readline
()
.
strip
()
with
open
(
tweet_output_file
,
"w"
)
as
fw
:
fw
.
write
(
header
)
add_newfile_to_metadata
(
tweet_output_file
,
os
.
path
.
join
(
collection_path
,
".metadata.json"
))
return
tweet_output_file
def
convert_tweet_to_csv
(
header
:
str
,
tweet
:
dict
)
->
str
:
# Flatten the tweet and store it in status_flat
status_flat
=
json2csv
.
flatten_dictionary
(
tweet
)
# Convert the flat JSON to CSV format
# 1st arg: flat tweet, 2nd arg: activate array compression, 3rd arg:
# number of array compression levels, 4th arg: remove dollars mode
status_csv
=
json2csv
.
json2csv
(
status_flat
,
True
,
5
,
False
)
csv_appendable_line
=
format_csv
.
get_csv_line
(
header
,
status_csv
)
return
csv_appendable_line
pymongoexport_csv.py
View file @
16f47745
...
@@ -3,189 +3,50 @@
...
@@ -3,189 +3,50 @@
import
pymongo
import
pymongo
import
os
import
os
import
argparse
import
argparse
import
json
import
re
import
datetime
from
email.utils
import
parsedate
from
tweet_manager.lib
import
json2csv
,
format_csv
from
lib
import
utils
def
parse_datetime
(
string
):
return
datetime
.
datetime
(
*
(
parsedate
(
string
)[:
6
]))
# Command line parsing
parser
=
argparse
.
ArgumentParser
(
def
create_task_database_structure
(
description
=
"Dump the tweets of a database to a JSON file"
)
output_dir
:
str
)
\
parser
.
add_argument
(
"-H"
,
"--host"
,
type
=
str
,
default
=
"localhost"
)
->
str
:
parser
.
add_argument
(
"-p"
,
"--port"
,
type
=
int
,
default
=
27017
)
"""
parser
.
add_argument
(
"database"
,
type
=
str
)
Generate the following directory tree: a top dir that will contain
args
=
parser
.
parse_args
()
all the tweet collections if it didn't exist yet and within it the top
directory for this task with a new and empty metadata file
# Dirs and files
"""
script_dir
=
os
.
path
.
dirname
(
__file__
)
output_dir
=
os
.
path
.
join
(
script_dir
,
"pymongodump"
,
args
.
database
)
# Create the root directory for the tweet collection
header_file
=
os
.
path
.
join
(
script_dir
,
"header.txt"
)
(
output_dir
,
db_name
)
=
os
.
path
.
split
(
output_dir
)
if
not
os
.
path
.
isdir
(
output_dir
):
# MongoDB connection
print
(
client
=
pymongo
.
MongoClient
(
args
.
host
,
args
.
port
)
"Building directory to contain the collected tweets at: "
database_tweets
=
client
[
args
.
database
][
"tweets"
]
+
os
.
path
.
abspath
(
output_dir
)
)
with
open
(
header_file
)
as
f
:
os
.
mkdir
(
output_dir
)
header
=
f
.
readline
()
collection_path
=
os
.
path
.
join
(
output_dir
,
db_name
)
if
not
os
.
path
.
isdir
(
collection_path
):
buffer_tweets
=
{}
print
(
"Initializing collection "
+
db_name
+
"..."
)
for
tweet
in
database_tweets
.
find
():
os
.
mkdir
(
collection_path
)
# Get output path and contents for the new CSV file
metadata_path
=
os
.
path
.
join
(
collection_path
,
".metadata.json"
)
csv_tweet_output_path
=
\
generate_metadata_file
(
metadata_path
)
utils
.
create_tweet_output_path
(
tweet
,
output_dir
)
csv_tweet_contents
=
\
return
collection_path
"
\n
"
+
str
(
utils
.
convert_tweet_to_csv
(
header
,
tweet
))
# Check if buffer exists for the file. If not, add to dictionary
def
generate_metadata_file
(
metadata_path
)
->
None
:
if
csv_tweet_output_path
not
in
buffer_tweets
.
keys
():
print
(
"Executing generate_metadata_file"
)
buffer_tweets
[
csv_tweet_output_path
]
=
[
""
,
0
]
file_metadata
=
{}
# type: Dict
metadata
=
{}
# Update the buffer adding the tweet and increasing tweet count
metadata
[
"files"
]
=
file_metadata
buffer_tweets
[
csv_tweet_output_path
][
0
]
+=
csv_tweet_contents
buffer_tweets
[
csv_tweet_output_path
][
1
]
+=
1
with
open
(
metadata_path
,
"w"
)
as
f
:
json
.
dump
(
metadata
,
f
)
# Perform the write operations in each of the files
for
output_path
in
buffer_tweets
.
keys
():
with
open
(
output_path
,
"a"
)
as
tweet_writer
:
def
add_newfile_to_metadata
(
file_path
:
str
,
metadata_path
:
str
)
->
None
:
tweet_writer
.
write
(
buffer_tweets
[
output_path
][
0
])
"""
utils
.
increase_metadata_count
(
Add a new dictionary structure to the metadata file that contains
os
.
path
.
join
(
output_dir
,
".metadata.json"
),
information about a newly added CSV. This should just be user for files
output_path
,
increase
=
buffer_tweets
[
output_path
][
1
])
that have just been added to the collection, because it initializes the
count to 0
"""
print
(
"Executing add_newfile_to_metadata"
)
try
:
with
open
(
metadata_path
,
"r+"
)
as
f
:
metadata_file
=
json
.
load
(
f
)
metadata_file
[
"files"
][
file_path
]
=
{}
metadata_file
[
"files"
][
file_path
][
"count"
]
=
0
f
.
seek
(
0
)
f
.
truncate
()
json
.
dump
(
metadata_file
,
f
)
except
IOError
:
generate_metadata_file
(
metadata_path
)
add_newfile_to_metadata
(
file_path
,
metadata_path
)
def
increase_metadata_count
(
metadata_path
:
str
,
file_path
:
str
,
increase
:
int
=
1
)
\
->
None
:
"""
Use this when one tweet is appended to one of the CSVs in the
collection. This function will update the metadata file by increasing
by x the corresponding dictionary structure
"""
print
(
"Executing increase_metadata_count"
)
try
:
with
open
(
metadata_path
,
"r+"
)
as
f
:
metadata_file
=
json
.
load
(
f
)
metadata_file
[
"files"
][
file_path
][
"count"
]
+=
increase
f
.
seek
(
0
)
f
.
truncate
()
json
.
dump
(
metadata_file
,
f
)
except
IOError
:
generate_metadata_file
(
metadata_path
)
increase_metadata_count
(
metadata_path
,
file_path
,
increase
)
def
create_tweet_output_path
(
tweet
:
dict
,
output_dir
:
str
)
\
->
str
:
collection_path
=
create_task_database_structure
(
output_dir
)
# Extract year, month and date from the tweet using a regex
matchObj
=
re
.
search
(
r"^(\d{4})-(\d{2})-(\d{2}) \d{2}:\d{2}:\d{2}$"
,
str
(
tweet
[
"created_at"
])
)
year
=
matchObj
.
group
(
1
)
month
=
matchObj
.
group
(
2
)
day
=
matchObj
.
group
(
3
)
date
=
(
year
,
month
,
""
)
# Classify the tweet chronologically
tweet_output_path
=
json2csv
.
mkdir_tweet_date
(
date
,
collection_path
)
tweet_output_file
=
os
.
path
.
join
(
tweet_output_path
,
day
+
".csv"
)
# If the CSV file didn't already exist, initialize it with a header
if
os
.
path
.
isfile
(
tweet_output_file
)
is
False
:
with
open
(
header_file
)
as
f
:
header
=
f
.
readline
()
.
strip
()
with
open
(
tweet_output_file
,
"w"
)
as
fw
:
fw
.
write
(
header
)
add_newfile_to_metadata
(
tweet_output_file
,
os
.
path
.
join
(
collection_path
,
".metadata.json"
))
return
tweet_output_file
def
convert_tweet_to_csv
(
header
:
str
,
tweet
:
dict
)
->
str
:
# Flatten the tweet and store it in status_flat
status_flat
=
json2csv
.
flatten_dictionary
(
tweet
)
# Convert the flat JSON to CSV format
# 1st arg: flat tweet, 2nd arg: activate array compression, 3rd arg:
# number of array compression levels, 4th arg: remove dollars mode
status_csv
=
json2csv
.
json2csv
(
status_flat
,
True
,
5
,
False
)
csv_appendable_line
=
format_csv
.
get_csv_line
(
header
,
status_csv
)
return
csv_appendable_line
if
__name__
==
'__main__'
:
# Command line parsing
parser
=
argparse
.
ArgumentParser
(
description
=
"Dump the tweets of a database to a JSON file"
)
parser
.
add_argument
(
"-H"
,
"--host"
,
type
=
str
,
default
=
"localhost"
)
parser
.
add_argument
(
"-p"
,
"--port"
,
type
=
int
,
default
=
27017
)
parser
.
add_argument
(
"database"
,
type
=
str
)
args
=
parser
.
parse_args
()
# Dirs and files
script_dir
=
os
.
path
.
dirname
(
__file__
)
output_dir
=
os
.
path
.
join
(
script_dir
,
"pymongodump"
,
args
.
database
)
header_file
=
os
.
path
.
join
(
script_dir
,
"header.txt"
)
# MongoDB connection
client
=
pymongo
.
MongoClient
(
args
.
host
,
args
.
port
)
database_tweets
=
client
[
args
.
database
][
"tweets"
]
with
open
(
header_file
)
as
f
:
header
=
f
.
readline
()
buffer_tweets
=
{}
for
tweet
in
database_tweets
.
find
():
# Get output path and contents for the new CSV file
csv_tweet_output_path
=
\
create_tweet_output_path
(
tweet
,
output_dir
)
csv_tweet_contents
=
\
"
\n
"
+
str
(
convert_tweet_to_csv
(
header
,
tweet
))
# Check if buffer exists for the file. If not, add to dictionary
if
csv_tweet_output_path
not
in
buffer_tweets
.
keys
():
buffer_tweets
[
csv_tweet_output_path
]
=
[
""
,
0
]
# Update the buffer adding the tweet and increasing tweet count
buffer_tweets
[
csv_tweet_output_path
][
0
]
+=
csv_tweet_contents
buffer_tweets
[
csv_tweet_output_path
][
1
]
+=
1
# Perform the write operations in each of the files
for
output_path
in
buffer_tweets
.
keys
():
with
open
(
output_path
,
"a"
)
as
tweet_writer
:
tweet_writer
.
write
(
buffer_tweets
[
output_path
][
0
])
increase_metadata_count
(
os
.
path
.
join
(
output_dir
,
".metadata.json"
),
output_path
,
increase
=
buffer_tweets
[
output_path
][
1
]
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment